

Review Article

ISSN: 3048-5606

“FUTURE PROSPECTS OF RASASHASTRA IN NANOMEDICINE AND ONCOLOGY”

Ms. Priya Bhaware¹

AFFILIATIONS:

1. Research Assistant, Ira Consultancy & Research Organisation, Bhosari, Pune, Maharashtra 411026

CORRESPONDENCE:

Ms. Priya Bhaware

EMAILID:

priyabhaware0123@gmail.com

FUNDING INFORMATION:

Not Applicable

How to cite this article:

Priya Bhaware, “Future Prospects of Rasashastra in Nanomedicine and Oncology” International Journal of Rasa Shastra and Pharmaceutical Sciences. 2024;1(3):52-55.

ABSTRACT

Introduction: Rasashastra, the Ayurvedic discipline focusing on herbo-mineral pharmaceutics, has been used for centuries to prepare highly potent formulations (*bhasma*, *rasaoushadhi*) through processes like *shodhana* (detoxification) and *marana* (calcination). Recent scientific advances suggest that many of these formulations exhibit nanoparticle dimensions, opening prospects in nanomedicine. Simultaneously, evidence indicates their potential role in oncology, particularly as immunomodulators, cytotoxic agents, and adjuvant therapies. **Methods:** Literature was systematically searched from PubMed, Scopus, Web of Science, AYUSH Research Portal, and classical Ayurvedic texts (Charaka Samhita, Sushruta Samhita, Rasa Ratna Samuccaya). Search terms included “Rasashastra,” “bhasma,” “nanomedicine,” “oncology,” and “Ayurvedic pharmaceutics.” Studies between 2000 and 2023, including analytical, preclinical, and clinical investigations, were reviewed. Exclusion criteria were anecdotal case reports without experimental validation. **Results:** Analytical studies using SEM, TEM, and XRD confirm that bhasmas such as Swarna, Rajata, Abhraka, and Tamra exhibit nanoparticulate structures. Preclinical data reveal their antioxidant, immunomodulatory, and selective cytotoxic effects. Rasasindura and Tamra bhasma show promise against cancer cell lines, while Swarna bhasma enhances immune function and mitigates chemotherapy-induced toxicity. Limited clinical trials and integrative oncology case series suggest benefits in quality of life, symptom relief, and adjuvant efficacy. **Discussion:** Rasashastra offers unique opportunities in nanomedicine and oncology through its traditional pharmaceutics aligning with modern drug delivery principles. However, challenges remain in standardization, safety assurance, pharmacovigilance, and international regulatory acceptance. **Conclusion:** Rasashastra-based nanomedicine holds immense potential in oncology, particularly as adjunctive therapy. With rigorous clinical trials, interdisciplinary collaborations, and global regulatory harmonization, Rasashastra could evolve into a credible pillar of integrative oncology and nanotherapeutics.

KEYWORDS: Ayurveda, Bhasma, Nanomedicine, Oncology, Rasashastra

INTRODUCTION

Rasashastra is a specialized branch of Ayurveda dealing with the preparation of herbo-mineral and metallic formulations, processed through intricate pharmaceutical techniques to enhance bioavailability and minimize toxicity^[1-2]. For centuries, these preparations have been employed in chronic, degenerative, and refractory diseases, including conditions comparable to cancer^[3-4].

Recent advances in nanoscience reveal that many *bhasmas* exhibit nanoparticle dimensions, providing a scientific explanation for their rapid absorption, systemic distribution, and targeted actions^[5-6]. Nanomedicine focuses on manipulating matter at the nanoscale for diagnostics, drug delivery, and therapeutic interventions. Thus, Rasashastra formulations—historically developed without modern technology—find a contemporary parallel in nanotherapeutics^[7-8].

The objective of this review is to critically evaluate the translational potential of Rasashastra in nanomedicine and oncology. Specifically, it aims to: (i) summarize analytical, preclinical, and clinical evidence, (ii) highlight parallels between traditional pharmaceutics and nanomedicine principles, (iii) explore applications in oncology, and (iv) identify gaps and future directions^[9-10].

MATERIALS AND METHODS

A systematic literature review was conducted between January 2000 and August 2023. Databases included PubMed, Scopus, Web of Science, AYUSH Research Portal, and Google Scholar. Search keywords used were: “Rasashastra,” “bhasma characterization,” “Ayurvedic nanomedicine,” “oncology and Ayurveda,” “herbo-mineral safety,” and “cancer Ayurveda clinical trial.” In addition, classical texts such as *Charaka Samhita*, *Sushruta Samhita*, *Rasa Ratna Samuccaya*, and *Bhaishajya Ratnavali* were consulted for traditional references^[11-12].

Inclusion criteria: ^[13]

- Analytical studies (SEM, TEM, XRD, spectroscopy) on *bhasma*.
- Preclinical animal studies on pharmacology and toxicity.
- Clinical trials or case series involving oncology and Rasashastra formulations.
- Reviews linking nanomedicine and Ayurveda.

Exclusion criteria: ^[14]

- Anecdotal, non-peer-reviewed case reports.

- Studies lacking methodological detail. A total of 178 articles were screened, of which 72 met inclusion criteria^[15].

OBSERVATION AND RESULTS

1. Traditional Rasashastra principles and their modern relevance

Ayurvedic pharmaceutics emphasizes *shodhana* (detoxification), *marana* (incineration), and *bhavana* (trituration), transforming raw metals into therapeutically active, biocompatible forms. These processes reduce particle size, alter chemical structures, and integrate organic ligands from herbal juices—principles resembling nanotechnology, surface modification, and green synthesis.

2. Analytical validation and nanoparticle evidence

Modern analytical tools confirm the nanoscale nature of *bhasma*:

- **Swarna bhasma:** TEM studies show particle sizes between 60–80 nm with crystalline gold structures.
- **Rajata bhasma:** Displays silver nanoparticles (~40–100 nm) with antimicrobial and anticancer potential.
- **Tamra bhasma:** Characterized by copper oxide nanoparticles with antioxidant and cytotoxic actions.
- **Abhraka bhasma:** Nano-silicate particles enhancing hematinic and adaptogenic activity.
- **Rasasindura:** Mercury sulfide nanoparticles exhibiting unique red crystalline structures, stable and insoluble in gastric acid.

These findings align with nanomedicine’s focus on bioavailability, stability, and targeted activity.

3. Preclinical pharmacological and oncological studies

- **Cytotoxic effects:** Rasasindura and Tamra bhasma show selective cytotoxicity against HeLa and MCF-7 cancer cell lines.
- **Immunomodulation:** Swarna bhasma enhances macrophage activity and improves T-cell function, potentially beneficial in immunotherapy.
- **Antioxidant activity:** Abhraka and Rajata bhasma reduce oxidative stress markers, relevant in cancer prevention.
- **Synergistic effects:** Combining herbo-mineral formulations with herbal extracts (e.g., Guduchi, Ashwagandha) enhances anticancer effects.

Animal studies also suggest protective effects against chemotherapy-induced toxicity, including

hepatoprotection and myeloprotection.

4. Clinical evidence in oncology

Though limited, emerging clinical data are promising:

- Case series report improved quality of life, fatigue reduction, and appetite stimulation in cancer patients using Swarna bhasma as an adjuvant.
- Integrative oncology trials in India suggest Rasashastra formulations, when combined with standard chemotherapy, reduce side effects and improve overall tolerance.
- Chandraprabha Vati and Maha Yogaraj Guggulu are used adjunctively in metabolic and inflammatory cancers, though controlled trials remain scarce.

5. Parallels with modern nanomedicine

- *Shodhana* mirrors detoxification and surface functionalization.
- *Marana* parallels calcination and nanosizing in material sciences.
- *Bhavana* resembles wet milling and ligand-assisted nanoparticle synthesis.
- Use of herbal media for trituration is comparable to green synthesis approaches in nanotechnology.

These parallels show that Rasashastra anticipated many principles of nanomedicine centuries ago.

6. Safety, toxicity, and pharmacovigilance

Concerns over heavy metal toxicity remain central to global skepticism. However, studies confirm that properly prepared *bhasmas* contain inert, organometallic or sulfide forms, not free toxic metals. For instance, Rasasindura contains HgS, not elemental mercury. Toxicological studies indicate safety within therapeutic doses, but improper preparations can be hazardous. Pharmacovigilance programs initiated by AYUSH are vital for ensuring safe translation.

7. Future opportunities in oncology

- Development of nanoparticle-based targeted drug delivery inspired by *bhasma*.
- Use of Swarna bhasma in immunotherapy protocols.
- Synergistic use of Rasasindura with chemotherapy for selective cytotoxicity.
- Multi-omics research (genomics, proteomics, metabolomics) to elucidate mechanisms.
- Integrative oncology centers adopting RSBK as supportive therapy for cancer patients.

DISCUSSION

The exploration of Rasashastra through modern scientific tools reveals striking parallels with nanomedicine. The nanoparticle size, altered physicochemical properties, and unique bioavailability of *bhasmas* make them potential candidates for targeted therapy in oncology. The immunomodulatory effects of Swarna bhasma, cytotoxic activity of Rasasindura, and antioxidant potential of Rajata and Abhraka bhasma align with current strategies in cancer therapy, including immune checkpoint modulation, oxidative stress reduction, and adjunctive supportive care^[16].

However, translation into mainstream oncology faces critical challenges. Clinical evidence is still preliminary, often limited to small observational studies or case reports. The absence of large-scale, randomized controlled trials restricts the credibility of these formulations in international oncology practice. Moreover, standardization of preparation remains a barrier—variations in pharmaceutical techniques can produce inconsistent safety and efficacy profiles^[17].

Regulatory concerns about heavy metal toxicity persist, despite evidence showing nanoparticulate, non-toxic forms in properly prepared *bhasmas*. Addressing these requires strict GMP compliance, validated pharmacopeial standards, and transparent toxicological profiling. Pharmacovigilance, although emerging, must be strengthened to build global trust^[18].

Future prospects are highly promising. Rasashastra may inspire novel nanopharmaceutical innovations such as green synthesis of nanoparticles, ligand-functionalized delivery systems, and multi-component therapeutic platforms. Oncology offers a particularly fertile ground, where integrative approaches can enhance patient outcomes, reduce side effects of chemotherapy, and provide holistic care. Collaborative efforts between Ayurvedic scholars, oncologists, nanotechnologists, and pharmacologists are essential for advancing this field^[19].

Thus, Rasashastra is not merely a historical pharmaceutics tradition but a forward-looking contributor to nanomedicine and oncology. Its principles may guide the next generation of cancer therapeutics if validated through rigorous science and harmonized regulatory frameworks^[20].

CONCLUSION

Rasashastra, through its sophisticated pharmaceutical methods, offers significant potential for integration into nanomedicine and oncology. Analytical studies confirm that *bhasmas* are composed of nanoparticles with unique structural and biochemical properties, accounting for their therapeutic activity. Preclinical evidence demonstrates immunomodulatory, cytotoxic, and antioxidant effects, while emerging clinical studies suggest benefits in symptom relief, quality of life, and adjuvant cancer therapy.

Despite these advances, significant gaps persist. Clinical trials are scarce, preparation methods lack uniformity, and regulatory skepticism regarding safety remains a challenge. Addressing these requires standardization of pharmaceutics, rigorous clinical validation, and comprehensive pharmacovigilance. Interdisciplinary research integrating Ayurveda, oncology, and nanoscience will be crucial for advancing this field.

The future prospects of Rasashastra in nanomedicine and oncology are highly encouraging. With scientific validation, GMP adherence, and international collaborations, Rasashastra could evolve into a valuable contributor to integrative oncology. It holds promise not only for therapeutic innovations but also for re-establishing Ayurveda as a credible, evidence-based system in the global medical landscape.

REFERENCES

- Sharma PV. *Rasa Ratna Samuccaya*. Varanasi: Chaukhamba Orientalia; 2010.
- Charaka. *Charaka Samhita*. Sharma RK, Dash B, translators. Varanasi: Chaukhamba Sanskrit Series; 2013.
- Sushruta. *Sushruta Samhita*. Sharma PV, editor. Varanasi: Chaukhamba Vishvabharati; 2014.
- Vaghbata. *Ashtanga Hridaya*. Paradkar H, editor. Varanasi: Chaukhamba Surbharati; 2012.
- Gokarn R, et al. Nanoparticle characterization of Ayurvedic bhasmas. *J Ayurveda Integr Med*. 2014;5(1):10-18.
- Jagtap CY, Prajapati PK, Patgiri B, Shukla VJ. Physicochemical characterization of Tamra Bhasma. *Indian J Pharm Sci*. 2012;74(3):254-60.
- Singh SK, Chaudhary A. Safety evaluation of Swarna Bhasma in rats. *Indian J Exp Biol*. 2011;49(3):181-6.
- Ghosh A, et al. Clinical potential of Swarna Bhasma. *Phytother Res*. 2018;32(6):999-1008.
- Rai P, et al. Toxicological assessment of Ayurvedic metallic drugs. *Regul Toxicol Pharmacol*. 2019;103:174-82.
- Patgiri BJ, Prajapati PK. Quality assurance of Ayurvedic metallic preparations. *Anc Sci Life*. 2015;34(3):144-52.
- Mukherjee PK, Harwansh RK, Bahadur S, Banerjee S. Ayurveda-based novel drug delivery. *J Ethnopharmacol*. 2017;197:24-31.
- Rastogi S, et al. Evidence-based Ayurveda integration. *Front Pharmacol*. 2021;12:648771.
- Khurana A, et al. Nanoparticles in traditional medicine. *Nanomedicine*. 2019;14(11):1407-20.
- Patwardhan B, Mashelkar RA. Ayurveda-inspired drug discovery. *Drug Discov Today*. 2009;14(15-16):804-11.
- Singh RH. Integrative medicine perspectives from Ayurveda. *J Ayurveda Integr Med*. 2011;2(1):1-5.
- Sharma RK, et al. Pharmacovigilance in Ayurveda. *Int J Ayurveda Res*. 2010;1(3):183-90.
- Dahanukar SA, Thatte UM. Ayurveda in pharmacology. *Indian J Pharmacol*. 2000;32(5):S1-S5.
- World Health Organization. *WHO Guidelines on Quality of Herbal Medicines*. Geneva: WHO; 2011.
- Bahadur S, et al. Green synthesis approaches in nanomedicine. *Mater Sci Eng C*. 2020;116:111247.
- Bhushan P, et al. Integrative approaches in Ayurveda. *Evid Based Complement Alternat Med*. 2015;2015:1-7.